
For Testing On Your Own.

Tips and Tricks

It’s absolutely okay if during development some bugs and errors appear in

the product. And sometimes it happens that you do not have QA team or

QA engineer on your project to detect them for you before release. And

unfortunately, users see them and write about it somewhere public or use

for their own benefit, like the billing system flaws.

Even if you don’t have professional testers on board,

there is still a need to verify if your product works as planned and if it’s

good enough for your users. Product owner, project manager, developer,

whoever is going to make testing should consider at least basic principles

of verifications.

Our company cares about the quality of the products we work on. That’s

why we gathered few tips on how you can test the product on your own.

https://relevant.software

Tip #1.

Understand what exactly

you need to test

Make sure you have answered the essential questions before starting

your verifications. Here are some of them:

Do I know what browsers/OS/platforms/resolutions

I have to test on?

Do I have requirements for performance?

(For example: will my product be ok if 1000 users will use it at the

same time?)

Do I have requirements for security?

What are the severity and priority of the project?

(this should help you to prioritize your testing scope)

Do I know if the product works as expected?

(If a tester is not the product owner then you need to make sure this

person has a clear understanding/requirements of how it should work/

look)

•

•

•

•

•

Feel free to extend the list with more questions that are specific to

your project.

bugs love to hide on the boundaries. Every partition has its maximum and

minimum values. You should cross them and see what happens. (e.g. the

form accepts age 18-56, submit 17 and 57 to check if the form validates

data right)

make sure your interface looks great not only on your phone and laptop.

You should ensure that your product works well on every device, platform

and in at least most popular browsers.

if you have a MacBook, then you can use a native XCode simulator to test

your application/website on a bunch of apple devices. For the Android

platform, we suggest using Android Studio Native Emulator

It will take a few seconds for you to open a dev tool

(for example in Google Chrome: shortcut Ctrl+Shift+C

(on Windows) or Command+Option+J (on Mac)).

Use boundary value technique for testing:

Try different screen sizes/devices/platforms:

Use simulators if you don’t have real devices:

Use developer tools:

Tip #2.

Cover common weak spots

https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.android.com/studio/run/emulator

Let’s take the Network tab for example to view

unexpected responses:

Chrome DevTools is the best assistant for your manual testing.

You can learn more about its functionality in the official documentation.

It will help you to:

find bad responses.

get into details of existing visual bugs

see performance

detect 404 errors

and much more.

•

•

•

•

•

•

https://developers.google.com/web/tools/chrome-devtools/

Don’t forget about Internet Explorer:

are you sure you don't have users who are still using IE? IE is different from

other browsers and a lot of bugs appear there. Developers hate to support

it, but if this browser is still important for your business, make sure your

product works in it.

LOADING …
1/100

After 3 seconds, 40% of new visitors will abandon your site. Use

“Performance” tab in the Chrome Dev tool to see how long your pages

take to load.

Take a look at performance:

Here is a simple real-life example:

It is a common mistake for product owners to start testing on the late

stages before the release. Testing on the early stages prevents the issues

that can potentially delay the delivery and mess with the deadlines. That’s

why you should start testing as soon as possible.

The price of a mistake is decidedly higher if detected at the end of

development.

Tip #3.

The earlier testing starts, the lower

development costs are

The Cost of Defects

System

testing

Integration

Testing

Unit

Testing

Implementation In-Service

Fix Earlier

reduce cost

Ambiguous scenario is found on the stage of specifications testing. It is

much faster and cheaper to fix this in documentation instead of fixing it

when it has passed the implementation phase.

Run
Tests

Write

regression

tests

F
in

d
 &

re
s
o

lv
e

b
u
g

s

R
u
n

re
g

re
s
io

n

te
s
ts

ShipBuild

Tip #4.

Make verifications part of your process

If you are using the Agile approach, try to make testing part of each

iteration. Each time a new build is delivered to your local/testing/

staging/production/whatever environment do two things:

Perform a "smoke" test to make sure nothing was broken

after adding new features to prevent regression.

Test all new features.

•

•

Tip #5.

Make bugs reporting clear

To avoid wasting the time of your developers on clarifications, make sure

you report your bugs in a clear and simple way. Templates for bug reporting

will unify your bugs and make it super clear for developers to understand.

Here is an example of the simple template for JIRA:

Preconditions:

SepsToReproduce:

{color:red}*Actual result:*{color}

{color:green}*Expected result:*{color}

Jira has its own markup language which will turn this template into the

simple bug report.

Here how it looks like:

Tip #6.

Document test cases

Documenting test cases at least on a high level will help you to:

Not miss anything on smoke/regression testing

Make super fast onboarding of outside specialist

Accelerate test automation with checklist or test cases

See coverage clearer

Easier plan your testing if the product is scaling

•

•

•

•

•

Requirements Design Development

Testing Deployment Maintenance

Requirment

specification validation

Project timeline review

Review of design

documents

Create the testing

project plan

Create high level

scenarios

Detailed test plan / test

cases

Test Plan sign-off

Unit testing

Test execution

(manual and automated

scripts)

Bug reporting /

restesting

Management reports

creation

Upgrade or migration

Acceptance testing

Final testing report

Track user feedback

Automation test script

updates

Reproducing

consumer’s issuses and

indentifing causes

Tip #7.

Get a QA specialist in your team

if the quality is your priority

It is a “gold standard” for leading software development companies to

involve QA specialists in all stages of the development, starting from the

stage of Requirements.

Here is how professional QA process looks like and how a QA specialist

might be helpful at each stage:

It is a proven fact that QA engineers are able to find “bugs” in the

requirements. Moreover, they can help you by just asking the right

questions of how the product should work in edge cases, as there is always

a chance that some scenarios are not covered in your specifications.

Tip #8.

Get a QA specialist in your team

if budget is important

We recommend involving QA engineers for many reasons including

saving the budget.

Let’s do simple math:

Usually, testing employs around 25-40% of the development time. Let's

suppose a developer is going to spend their time testing cases. Instead of

working on the new features of your product, they are preoccupied with

tests. Taking into account the fact that the developer's rate is usually

30-40% higher than a QA engineer rate, hiring a QA specialist you are

saving 30-40% of the budget.

Take care of your product!

www.relevant.software

https://relevant.software
https://relevant.software

